IMAGEIntegrated Model to Assess the Global Environment.

Extensive components overview

From IMAGE

Jump to: navigation, search

All components of the IMAGE framework per type, i.e. driver components; pressure components; state components; impact components and response components, including key publications and flowcharts.


An overview of the IMAGE framework DPSIR classification



Click on the flowchart to open the flowchart page.

Driver components

ComponentMain PublicationsFlowchart
Drivers
  • IPCC (2000). Special report on emissions scenarios‚ Cambridge University Press‚ Cambridge, UK.
  • MA (2005). Ecosystems and human well-being: Scenarios‚ Carpenter, S.R.‚ Pingali, P.‚ Bennet, E.M.‚ Zurek, M.B. (eds.)‚ Millennium Ecosystem Assessment‚ Island Press‚ Washington D.C.‚ 2.
  • OECD (2012). OECD Environmental outlook to 2050: The consequences of inaction‚ OECD Publishing‚ Paris, France.Link to PBL-website: http://www.pbl.nl/en/publications/2012/oecd-environmental-outlook-to-2050.

Pressure components

ComponentMain PublicationsFlowchart
Agricultural economy
  • E. Stehfest‚ M. Berg‚ G. Woltjer‚ S. Msangi‚ H. Westhoek (2013). Options to reduce the environmental effects of livestock production - Comparison of two economic models. Agricultural Systems‚ 114‚ pp.38-53. Link to PBL-website: http://www.pbl.nl/en/publications/2012/options-to-reduce-the-environmental-effects-of-livestock-production-%E2%80%93-comparison-of-two-economic-models.
  • Von Lampe, M., Willenbockel D., Calvin K., Fujimori S., Hasegawa T., Havlik P., Kyle P., Lotze-Campen H., Mason d’Croz D., Nelson G., Sands R., Schmitz C., Tabeau A., Valin H., van der Mensbrugghe D. and van Meijl H. (2014). Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison.. Agricultural Economics, Special Issue on Global Model Intercomparison‚ 45(1)‚ pp.3-20‚ doi: http://dx.doi.org/10.1111/agec.12086.
  • G.B. Woltjer‚ M. Kuiper‚ A. Kavallari‚ H. van Meijl‚ J. Powell‚ M. Rutten‚ L. Shutes‚ A. Tabeau (2014). ‚ LEI‚ The Hague.
Energy conversion
Energy demand
Energy supply
Forest management
  • E.J.M.M. Arets‚ P.J. van der Meer‚ C.C. Verwer‚ G.M. Hengeveld‚ G.W. Tolkamp‚ G.J. Nabuurs‚ M. van Oorschot (2011). Global wood production : assessment of industrial round wood supply from forest management systems in different global regions‚ Alterra Wageningen UR.
Land-use allocation
Livestock systems

Interaction components

ComponentMain PublicationsFlowchart
Emissions
Land cover and land use

State components

ComponentMain PublicationsFlowchart
Atmospheric composition and climate
  • M. Meinshausen‚ T. M. L. Wigley‚ S. C. B. Raper (2011). Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 2: Applications. Atmospheric Chemistry and Physics‚ 11(4)‚ pp.1457-1471.
  • Ch. Müller‚ E. Stehfest‚ J.G. van Minnen‚ B. Strengers‚ W. von Bloh‚ A. Beusen‚ S. Schaphoff‚ T. Kram‚ W. Lucht (in revision). Reversal of the land biosphere carbon balance under climate and land-use change. Natures Climate Change, in revision, available on request.
  • D. P. van Vuuren‚ E. Stehfest (2013). If climate action becomes urgent: the importance of response times for various climate strategies. Climatic Change‚ 121(3)‚ pp.473-486‚ doi: http://dx.doi.org/10.1007/s10584-013-0769-5. Link to PBL-website: http://www.pbl.nl/en/publications/if-climate-action-becomes-urgent-the-importance-of-response-times-for-various-climate-strategies.
Carbon cycle and natural vegetation
  • Ch. Müller‚ E. Stehfest‚ J.G. van Minnen‚ B. Strengers‚ W. von Bloh‚ A. Beusen‚ S. Schaphoff‚ T. Kram‚ W. Lucht (in revision). Reversal of the land biosphere carbon balance under climate and land-use change. Natures Climate Change, in revision, available on request.
  • S. Sitch‚ B. Smith‚ I.C. Prentice‚ A. Arneth‚ A. Bondeau‚ W. Cramer‚ J.O. Kaplan‚ S. Levis‚ W. Lucht‚ M.T. Sykes‚ K. Thonicke‚ S. Venevsky (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology‚ 9(2)‚ pp.161-185.
Crops and grass
  • A. Bondeau‚ P. C. Smith‚ S. Zaehle‚ S. Schaphoff‚ W. Lucht‚ W. Cramer‚ D. Gerten‚ H. Lotze-Campen‚ C. Müller‚ M. Reichstein‚ B. Smith (2007). Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology‚ 13(3)‚ pp.679-706.
  • K. Waha‚ L.G.J. van Bussel‚ C. Müller‚ A. Bondeau (2012). Climate-driven simulation of global crop sowing dates. Global Ecology and Biogeography‚ 21(2)‚ pp.247-259‚ doi: http://dx.doi.org/10.1111/j.1466-8238.2011.00678.x.
Nutrients
Water
  • H Biemans‚ I Haddeland‚ P Kabat‚ F Ludwig‚ RWA Hutjes‚ J Heinke‚ W Von Bloh‚ D Gerten (2011). Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resources Research‚ 47(3)‚ pp.W03509‚ doi: http://dx.doi.org/10.1029/2009WR008929.
  • H. Biemans (2012). Water constraints on future food production.  Earth System Science. Ph.D thesis. Wageningen University. The Netherlands.
  • D. Gerten‚ S. Schaphoff‚ U. Haberlandt‚ W. Lucht‚ S. Sitch (2004). Terrestrial vegetation and water balance - hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology‚ 286(1-4)‚ pp.249-270‚ doi: http://dx.doi.org/10.1016/j.jhydrol.2003.09.029.

Impact component

ComponentMain PublicationsFlowchart
Aquatic biodiversity
  • Alkemade, R.‚ Janse, J.H.‚ Van Rooij, W.‚ Trisurat, Y. (2011). Applying GLOBIO at different geographical levels. In: Trisurat, Y., Shrestha, R.P., Alkemade, R. (eds.)‚ Land Use, Climate change and biodiversity modeling: perspectives and applications. IGI Global‚ Hershey (PA), USA‚ pp.150-170.
  • J.H. Janse‚ J.J. Kuiper‚ M.J. Weijters‚ E.P. Westerbeek‚ M.H.J.L. Jeuken‚ R. Alkemade‚ J. T. A. Verhoeven (2013). GLOBIO-aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Submitted, available on request.
Ecosystem services
Flood risks
  • P. J. Ward‚ B. Jongman‚ F. Sperna Weiland‚ A. A. Bouwman‚ R. van Beek‚ M.F.P. Bierkens‚ W. Ligtvoet‚ H. C. Winsemius (2013). Assessing flood risk at the global scale: model setup, results, and sensitivity. Environmental Research Letters‚ 8‚ pp.8044019‚ doi: http://dx.doi.org/10.1088/1748-9326/8/4/044019.
  • H. C. Winsemius‚ L. P. H. Van Beek‚ B. Jongman‚ P. J. Ward‚ A. A. Bouwman (2012). A framework for global river flood risk assessments. Hydrology and Earth System Sciences Discussions‚ 9(8)‚ pp.9611-9659.
Human development
Land degradation
  • R.M. Hootsmans‚ A.F. Bouwman‚ R. Leemans‚ G.J.J. Kreileman (2001). Modelling land degradation in IMAGE 2‚ National Institute of Public Health and the Environment‚ Bilthoven, the Netherlands (URL: http://www.pbl.nl/en/publications/2001/Modelling_land_degradation_in_IMAGE_2).
  • J. J. Stoorvogel‚ Temme A. J.A.M.‚ Bakkenes M.‚ Batjes N.H.‚ Brandsma J. (in preparation). A global soil property map for environmental modelling: S-world. In preparation, available on request.
  • J.J. Stoorvogel (2014). S-world: A global map of soil properties for modeling. In: D. Arrouays‚ N. McKenzey‚ J. Hempel‚ A.C. Richer de Forges‚ A. McBratney (eds.)‚ GlobalSoilMap, basis of the global spatial soil information system. Taylor & Francis Group‚ London, UK‚ pp.227-231.
  • R. van Beek (2012). Estimating soil hydraulic properties for reconstructed maps of historic land use using pedotransfer functions‚ Utrecht University (Internal report)‚ The Netherlands.
Terrestrial biodiversity

Response components

ComponentMain PublicationsFlowchart
Air pollution and energy policies
Climate policy
Land and biodiversity policies

Related overviews